import base64 import numpy as np import cv2 from segment_anything import sam_model_registry, SamPredictor import torch import time from flask import Flask, request # check torch version and if cuda is available print(torch.__version__) print(torch.cuda.is_available()) # checkpoint = "sam_vit_b_01ec64.pth" print(time.time()) # set large model related configs checkpoint = "notebooks/sam_vit_h_4b8939.pth" model_type = "vit_h" sam = sam_model_registry[model_type](checkpoint=checkpoint) sam.to(device='cuda') predictor = SamPredictor(sam) app = Flask(__name__) def base64_to_image(base64_code): img_data = base64.b64decode(base64_code) img_array = np.fromstring(img_data, np.uint8) img = cv2.imdecode(img_array, cv2.COLOR_RGB2BGR) return img @app.route('/embedding', methods=["GET", "POST"]) def index(): print('request received') if (request.method != 'POST'): return 'Only support POST method' content_type = request.headers.get('Content-Type') if (content_type == 'application/json'): print('start calculate embedding') base64data = request.get_json()['imgurl'] image = base64_to_image(base64data) predictor.set_image(image) image_embedding = predictor.get_image_embedding().cpu().numpy() image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) print(time.time()) return image_embedding else: return 'Content-Type not supported!' app.run(port=2020, host="127.0.0.1", debug=True) print('server starts working')