Initial commit
This commit is contained in:
5
segment_anything/utils/__init__.py
Normal file
5
segment_anything/utils/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
346
segment_anything/utils/amg.py
Normal file
346
segment_anything/utils/amg.py
Normal file
@@ -0,0 +1,346 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import math
|
||||
from copy import deepcopy
|
||||
from itertools import product
|
||||
from typing import Any, Dict, Generator, ItemsView, List, Tuple
|
||||
|
||||
|
||||
class MaskData:
|
||||
"""
|
||||
A structure for storing masks and their related data in batched format.
|
||||
Implements basic filtering and concatenation.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs) -> None:
|
||||
for v in kwargs.values():
|
||||
assert isinstance(
|
||||
v, (list, np.ndarray, torch.Tensor)
|
||||
), "MaskData only supports list, numpy arrays, and torch tensors."
|
||||
self._stats = dict(**kwargs)
|
||||
|
||||
def __setitem__(self, key: str, item: Any) -> None:
|
||||
assert isinstance(
|
||||
item, (list, np.ndarray, torch.Tensor)
|
||||
), "MaskData only supports list, numpy arrays, and torch tensors."
|
||||
self._stats[key] = item
|
||||
|
||||
def __delitem__(self, key: str) -> None:
|
||||
del self._stats[key]
|
||||
|
||||
def __getitem__(self, key: str) -> Any:
|
||||
return self._stats[key]
|
||||
|
||||
def items(self) -> ItemsView[str, Any]:
|
||||
return self._stats.items()
|
||||
|
||||
def filter(self, keep: torch.Tensor) -> None:
|
||||
for k, v in self._stats.items():
|
||||
if v is None:
|
||||
self._stats[k] = None
|
||||
elif isinstance(v, torch.Tensor):
|
||||
self._stats[k] = v[torch.as_tensor(keep, device=v.device)]
|
||||
elif isinstance(v, np.ndarray):
|
||||
self._stats[k] = v[keep.detach().cpu().numpy()]
|
||||
elif isinstance(v, list) and keep.dtype == torch.bool:
|
||||
self._stats[k] = [a for i, a in enumerate(v) if keep[i]]
|
||||
elif isinstance(v, list):
|
||||
self._stats[k] = [v[i] for i in keep]
|
||||
else:
|
||||
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
||||
|
||||
def cat(self, new_stats: "MaskData") -> None:
|
||||
for k, v in new_stats.items():
|
||||
if k not in self._stats or self._stats[k] is None:
|
||||
self._stats[k] = deepcopy(v)
|
||||
elif isinstance(v, torch.Tensor):
|
||||
self._stats[k] = torch.cat([self._stats[k], v], dim=0)
|
||||
elif isinstance(v, np.ndarray):
|
||||
self._stats[k] = np.concatenate([self._stats[k], v], axis=0)
|
||||
elif isinstance(v, list):
|
||||
self._stats[k] = self._stats[k] + deepcopy(v)
|
||||
else:
|
||||
raise TypeError(f"MaskData key {k} has an unsupported type {type(v)}.")
|
||||
|
||||
def to_numpy(self) -> None:
|
||||
for k, v in self._stats.items():
|
||||
if isinstance(v, torch.Tensor):
|
||||
self._stats[k] = v.detach().cpu().numpy()
|
||||
|
||||
|
||||
def is_box_near_crop_edge(
|
||||
boxes: torch.Tensor, crop_box: List[int], orig_box: List[int], atol: float = 20.0
|
||||
) -> torch.Tensor:
|
||||
"""Filter masks at the edge of a crop, but not at the edge of the original image."""
|
||||
crop_box_torch = torch.as_tensor(crop_box, dtype=torch.float, device=boxes.device)
|
||||
orig_box_torch = torch.as_tensor(orig_box, dtype=torch.float, device=boxes.device)
|
||||
boxes = uncrop_boxes_xyxy(boxes, crop_box).float()
|
||||
near_crop_edge = torch.isclose(boxes, crop_box_torch[None, :], atol=atol, rtol=0)
|
||||
near_image_edge = torch.isclose(boxes, orig_box_torch[None, :], atol=atol, rtol=0)
|
||||
near_crop_edge = torch.logical_and(near_crop_edge, ~near_image_edge)
|
||||
return torch.any(near_crop_edge, dim=1)
|
||||
|
||||
|
||||
def box_xyxy_to_xywh(box_xyxy: torch.Tensor) -> torch.Tensor:
|
||||
box_xywh = deepcopy(box_xyxy)
|
||||
box_xywh[2] = box_xywh[2] - box_xywh[0]
|
||||
box_xywh[3] = box_xywh[3] - box_xywh[1]
|
||||
return box_xywh
|
||||
|
||||
|
||||
def batch_iterator(batch_size: int, *args) -> Generator[List[Any], None, None]:
|
||||
assert len(args) > 0 and all(
|
||||
len(a) == len(args[0]) for a in args
|
||||
), "Batched iteration must have inputs of all the same size."
|
||||
n_batches = len(args[0]) // batch_size + int(len(args[0]) % batch_size != 0)
|
||||
for b in range(n_batches):
|
||||
yield [arg[b * batch_size : (b + 1) * batch_size] for arg in args]
|
||||
|
||||
|
||||
def mask_to_rle_pytorch(tensor: torch.Tensor) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Encodes masks to an uncompressed RLE, in the format expected by
|
||||
pycoco tools.
|
||||
"""
|
||||
# Put in fortran order and flatten h,w
|
||||
b, h, w = tensor.shape
|
||||
tensor = tensor.permute(0, 2, 1).flatten(1)
|
||||
|
||||
# Compute change indices
|
||||
diff = tensor[:, 1:] ^ tensor[:, :-1]
|
||||
change_indices = diff.nonzero()
|
||||
|
||||
# Encode run length
|
||||
out = []
|
||||
for i in range(b):
|
||||
cur_idxs = change_indices[change_indices[:, 0] == i, 1]
|
||||
cur_idxs = torch.cat(
|
||||
[
|
||||
torch.tensor([0], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
||||
cur_idxs + 1,
|
||||
torch.tensor([h * w], dtype=cur_idxs.dtype, device=cur_idxs.device),
|
||||
]
|
||||
)
|
||||
btw_idxs = cur_idxs[1:] - cur_idxs[:-1]
|
||||
counts = [] if tensor[i, 0] == 0 else [0]
|
||||
counts.extend(btw_idxs.detach().cpu().tolist())
|
||||
out.append({"size": [h, w], "counts": counts})
|
||||
return out
|
||||
|
||||
|
||||
def rle_to_mask(rle: Dict[str, Any]) -> np.ndarray:
|
||||
"""Compute a binary mask from an uncompressed RLE."""
|
||||
h, w = rle["size"]
|
||||
mask = np.empty(h * w, dtype=bool)
|
||||
idx = 0
|
||||
parity = False
|
||||
for count in rle["counts"]:
|
||||
mask[idx : idx + count] = parity
|
||||
idx += count
|
||||
parity ^= True
|
||||
mask = mask.reshape(w, h)
|
||||
return mask.transpose() # Put in C order
|
||||
|
||||
|
||||
def area_from_rle(rle: Dict[str, Any]) -> int:
|
||||
return sum(rle["counts"][1::2])
|
||||
|
||||
|
||||
def calculate_stability_score(
|
||||
masks: torch.Tensor, mask_threshold: float, threshold_offset: float
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Computes the stability score for a batch of masks. The stability
|
||||
score is the IoU between the binary masks obtained by thresholding
|
||||
the predicted mask logits at high and low values.
|
||||
"""
|
||||
# One mask is always contained inside the other.
|
||||
# Save memory by preventing unnecesary cast to torch.int64
|
||||
intersections = (
|
||||
(masks > (mask_threshold + threshold_offset))
|
||||
.sum(-1, dtype=torch.int16)
|
||||
.sum(-1, dtype=torch.int32)
|
||||
)
|
||||
unions = (
|
||||
(masks > (mask_threshold - threshold_offset))
|
||||
.sum(-1, dtype=torch.int16)
|
||||
.sum(-1, dtype=torch.int32)
|
||||
)
|
||||
return intersections / unions
|
||||
|
||||
|
||||
def build_point_grid(n_per_side: int) -> np.ndarray:
|
||||
"""Generates a 2D grid of points evenly spaced in [0,1]x[0,1]."""
|
||||
offset = 1 / (2 * n_per_side)
|
||||
points_one_side = np.linspace(offset, 1 - offset, n_per_side)
|
||||
points_x = np.tile(points_one_side[None, :], (n_per_side, 1))
|
||||
points_y = np.tile(points_one_side[:, None], (1, n_per_side))
|
||||
points = np.stack([points_x, points_y], axis=-1).reshape(-1, 2)
|
||||
return points
|
||||
|
||||
|
||||
def build_all_layer_point_grids(
|
||||
n_per_side: int, n_layers: int, scale_per_layer: int
|
||||
) -> List[np.ndarray]:
|
||||
"""Generates point grids for all crop layers."""
|
||||
points_by_layer = []
|
||||
for i in range(n_layers + 1):
|
||||
n_points = int(n_per_side / (scale_per_layer**i))
|
||||
points_by_layer.append(build_point_grid(n_points))
|
||||
return points_by_layer
|
||||
|
||||
|
||||
def generate_crop_boxes(
|
||||
im_size: Tuple[int, ...], n_layers: int, overlap_ratio: float
|
||||
) -> Tuple[List[List[int]], List[int]]:
|
||||
"""
|
||||
Generates a list of crop boxes of different sizes. Each layer
|
||||
has (2**i)**2 boxes for the ith layer.
|
||||
"""
|
||||
crop_boxes, layer_idxs = [], []
|
||||
im_h, im_w = im_size
|
||||
short_side = min(im_h, im_w)
|
||||
|
||||
# Original image
|
||||
crop_boxes.append([0, 0, im_w, im_h])
|
||||
layer_idxs.append(0)
|
||||
|
||||
def crop_len(orig_len, n_crops, overlap):
|
||||
return int(math.ceil((overlap * (n_crops - 1) + orig_len) / n_crops))
|
||||
|
||||
for i_layer in range(n_layers):
|
||||
n_crops_per_side = 2 ** (i_layer + 1)
|
||||
overlap = int(overlap_ratio * short_side * (2 / n_crops_per_side))
|
||||
|
||||
crop_w = crop_len(im_w, n_crops_per_side, overlap)
|
||||
crop_h = crop_len(im_h, n_crops_per_side, overlap)
|
||||
|
||||
crop_box_x0 = [int((crop_w - overlap) * i) for i in range(n_crops_per_side)]
|
||||
crop_box_y0 = [int((crop_h - overlap) * i) for i in range(n_crops_per_side)]
|
||||
|
||||
# Crops in XYWH format
|
||||
for x0, y0 in product(crop_box_x0, crop_box_y0):
|
||||
box = [x0, y0, min(x0 + crop_w, im_w), min(y0 + crop_h, im_h)]
|
||||
crop_boxes.append(box)
|
||||
layer_idxs.append(i_layer + 1)
|
||||
|
||||
return crop_boxes, layer_idxs
|
||||
|
||||
|
||||
def uncrop_boxes_xyxy(boxes: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
||||
x0, y0, _, _ = crop_box
|
||||
offset = torch.tensor([[x0, y0, x0, y0]], device=boxes.device)
|
||||
# Check if boxes has a channel dimension
|
||||
if len(boxes.shape) == 3:
|
||||
offset = offset.unsqueeze(1)
|
||||
return boxes + offset
|
||||
|
||||
|
||||
def uncrop_points(points: torch.Tensor, crop_box: List[int]) -> torch.Tensor:
|
||||
x0, y0, _, _ = crop_box
|
||||
offset = torch.tensor([[x0, y0]], device=points.device)
|
||||
# Check if points has a channel dimension
|
||||
if len(points.shape) == 3:
|
||||
offset = offset.unsqueeze(1)
|
||||
return points + offset
|
||||
|
||||
|
||||
def uncrop_masks(
|
||||
masks: torch.Tensor, crop_box: List[int], orig_h: int, orig_w: int
|
||||
) -> torch.Tensor:
|
||||
x0, y0, x1, y1 = crop_box
|
||||
if x0 == 0 and y0 == 0 and x1 == orig_w and y1 == orig_h:
|
||||
return masks
|
||||
# Coordinate transform masks
|
||||
pad_x, pad_y = orig_w - (x1 - x0), orig_h - (y1 - y0)
|
||||
pad = (x0, pad_x - x0, y0, pad_y - y0)
|
||||
return torch.nn.functional.pad(masks, pad, value=0)
|
||||
|
||||
|
||||
def remove_small_regions(
|
||||
mask: np.ndarray, area_thresh: float, mode: str
|
||||
) -> Tuple[np.ndarray, bool]:
|
||||
"""
|
||||
Removes small disconnected regions and holes in a mask. Returns the
|
||||
mask and an indicator of if the mask has been modified.
|
||||
"""
|
||||
import cv2 # type: ignore
|
||||
|
||||
assert mode in ["holes", "islands"]
|
||||
correct_holes = mode == "holes"
|
||||
working_mask = (correct_holes ^ mask).astype(np.uint8)
|
||||
n_labels, regions, stats, _ = cv2.connectedComponentsWithStats(working_mask, 8)
|
||||
sizes = stats[:, -1][1:] # Row 0 is background label
|
||||
small_regions = [i + 1 for i, s in enumerate(sizes) if s < area_thresh]
|
||||
if len(small_regions) == 0:
|
||||
return mask, False
|
||||
fill_labels = [0] + small_regions
|
||||
if not correct_holes:
|
||||
fill_labels = [i for i in range(n_labels) if i not in fill_labels]
|
||||
# If every region is below threshold, keep largest
|
||||
if len(fill_labels) == 0:
|
||||
fill_labels = [int(np.argmax(sizes)) + 1]
|
||||
mask = np.isin(regions, fill_labels)
|
||||
return mask, True
|
||||
|
||||
|
||||
def coco_encode_rle(uncompressed_rle: Dict[str, Any]) -> Dict[str, Any]:
|
||||
from pycocotools import mask as mask_utils # type: ignore
|
||||
|
||||
h, w = uncompressed_rle["size"]
|
||||
rle = mask_utils.frPyObjects(uncompressed_rle, h, w)
|
||||
rle["counts"] = rle["counts"].decode("utf-8") # Necessary to serialize with json
|
||||
return rle
|
||||
|
||||
|
||||
def batched_mask_to_box(masks: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Calculates boxes in XYXY format around masks. Return [0,0,0,0] for
|
||||
an empty mask. For input shape C1xC2x...xHxW, the output shape is C1xC2x...x4.
|
||||
"""
|
||||
# torch.max below raises an error on empty inputs, just skip in this case
|
||||
if torch.numel(masks) == 0:
|
||||
return torch.zeros(*masks.shape[:-2], 4, device=masks.device)
|
||||
|
||||
# Normalize shape to CxHxW
|
||||
shape = masks.shape
|
||||
h, w = shape[-2:]
|
||||
if len(shape) > 2:
|
||||
masks = masks.flatten(0, -3)
|
||||
else:
|
||||
masks = masks.unsqueeze(0)
|
||||
|
||||
# Get top and bottom edges
|
||||
in_height, _ = torch.max(masks, dim=-1)
|
||||
in_height_coords = in_height * torch.arange(h, device=in_height.device)[None, :]
|
||||
bottom_edges, _ = torch.max(in_height_coords, dim=-1)
|
||||
in_height_coords = in_height_coords + h * (~in_height)
|
||||
top_edges, _ = torch.min(in_height_coords, dim=-1)
|
||||
|
||||
# Get left and right edges
|
||||
in_width, _ = torch.max(masks, dim=-2)
|
||||
in_width_coords = in_width * torch.arange(w, device=in_width.device)[None, :]
|
||||
right_edges, _ = torch.max(in_width_coords, dim=-1)
|
||||
in_width_coords = in_width_coords + w * (~in_width)
|
||||
left_edges, _ = torch.min(in_width_coords, dim=-1)
|
||||
|
||||
# If the mask is empty the right edge will be to the left of the left edge.
|
||||
# Replace these boxes with [0, 0, 0, 0]
|
||||
empty_filter = (right_edges < left_edges) | (bottom_edges < top_edges)
|
||||
out = torch.stack([left_edges, top_edges, right_edges, bottom_edges], dim=-1)
|
||||
out = out * (~empty_filter).unsqueeze(-1)
|
||||
|
||||
# Return to original shape
|
||||
if len(shape) > 2:
|
||||
out = out.reshape(*shape[:-2], 4)
|
||||
else:
|
||||
out = out[0]
|
||||
|
||||
return out
|
144
segment_anything/utils/onnx.py
Normal file
144
segment_anything/utils/onnx.py
Normal file
@@ -0,0 +1,144 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from typing import Tuple
|
||||
|
||||
from ..modeling import Sam
|
||||
from .amg import calculate_stability_score
|
||||
|
||||
|
||||
class SamOnnxModel(nn.Module):
|
||||
"""
|
||||
This model should not be called directly, but is used in ONNX export.
|
||||
It combines the prompt encoder, mask decoder, and mask postprocessing of Sam,
|
||||
with some functions modified to enable model tracing. Also supports extra
|
||||
options controlling what information. See the ONNX export script for details.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model: Sam,
|
||||
return_single_mask: bool,
|
||||
use_stability_score: bool = False,
|
||||
return_extra_metrics: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.mask_decoder = model.mask_decoder
|
||||
self.model = model
|
||||
self.img_size = model.image_encoder.img_size
|
||||
self.return_single_mask = return_single_mask
|
||||
self.use_stability_score = use_stability_score
|
||||
self.stability_score_offset = 1.0
|
||||
self.return_extra_metrics = return_extra_metrics
|
||||
|
||||
@staticmethod
|
||||
def resize_longest_image_size(
|
||||
input_image_size: torch.Tensor, longest_side: int
|
||||
) -> torch.Tensor:
|
||||
input_image_size = input_image_size.to(torch.float32)
|
||||
scale = longest_side / torch.max(input_image_size)
|
||||
transformed_size = scale * input_image_size
|
||||
transformed_size = torch.floor(transformed_size + 0.5).to(torch.int64)
|
||||
return transformed_size
|
||||
|
||||
def _embed_points(self, point_coords: torch.Tensor, point_labels: torch.Tensor) -> torch.Tensor:
|
||||
point_coords = point_coords + 0.5
|
||||
point_coords = point_coords / self.img_size
|
||||
point_embedding = self.model.prompt_encoder.pe_layer._pe_encoding(point_coords)
|
||||
point_labels = point_labels.unsqueeze(-1).expand_as(point_embedding)
|
||||
|
||||
point_embedding = point_embedding * (point_labels != -1)
|
||||
point_embedding = point_embedding + self.model.prompt_encoder.not_a_point_embed.weight * (
|
||||
point_labels == -1
|
||||
)
|
||||
|
||||
for i in range(self.model.prompt_encoder.num_point_embeddings):
|
||||
point_embedding = point_embedding + self.model.prompt_encoder.point_embeddings[
|
||||
i
|
||||
].weight * (point_labels == i)
|
||||
|
||||
return point_embedding
|
||||
|
||||
def _embed_masks(self, input_mask: torch.Tensor, has_mask_input: torch.Tensor) -> torch.Tensor:
|
||||
mask_embedding = has_mask_input * self.model.prompt_encoder.mask_downscaling(input_mask)
|
||||
mask_embedding = mask_embedding + (
|
||||
1 - has_mask_input
|
||||
) * self.model.prompt_encoder.no_mask_embed.weight.reshape(1, -1, 1, 1)
|
||||
return mask_embedding
|
||||
|
||||
def mask_postprocessing(self, masks: torch.Tensor, orig_im_size: torch.Tensor) -> torch.Tensor:
|
||||
masks = F.interpolate(
|
||||
masks,
|
||||
size=(self.img_size, self.img_size),
|
||||
mode="bilinear",
|
||||
align_corners=False,
|
||||
)
|
||||
|
||||
prepadded_size = self.resize_longest_image_size(orig_im_size, self.img_size)
|
||||
masks = masks[..., : int(prepadded_size[0]), : int(prepadded_size[1])]
|
||||
|
||||
orig_im_size = orig_im_size.to(torch.int64)
|
||||
h, w = orig_im_size[0], orig_im_size[1]
|
||||
masks = F.interpolate(masks, size=(h, w), mode="bilinear", align_corners=False)
|
||||
return masks
|
||||
|
||||
def select_masks(
|
||||
self, masks: torch.Tensor, iou_preds: torch.Tensor, num_points: int
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Determine if we should return the multiclick mask or not from the number of points.
|
||||
# The reweighting is used to avoid control flow.
|
||||
score_reweight = torch.tensor(
|
||||
[[1000] + [0] * (self.model.mask_decoder.num_mask_tokens - 1)]
|
||||
).to(iou_preds.device)
|
||||
score = iou_preds + (num_points - 2.5) * score_reweight
|
||||
best_idx = torch.argmax(score, dim=1)
|
||||
masks = masks[torch.arange(masks.shape[0]), best_idx, :, :].unsqueeze(1)
|
||||
iou_preds = iou_preds[torch.arange(masks.shape[0]), best_idx].unsqueeze(1)
|
||||
|
||||
return masks, iou_preds
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
point_coords: torch.Tensor,
|
||||
point_labels: torch.Tensor,
|
||||
mask_input: torch.Tensor,
|
||||
has_mask_input: torch.Tensor,
|
||||
orig_im_size: torch.Tensor,
|
||||
):
|
||||
sparse_embedding = self._embed_points(point_coords, point_labels)
|
||||
dense_embedding = self._embed_masks(mask_input, has_mask_input)
|
||||
|
||||
masks, scores = self.model.mask_decoder.predict_masks(
|
||||
image_embeddings=image_embeddings,
|
||||
image_pe=self.model.prompt_encoder.get_dense_pe(),
|
||||
sparse_prompt_embeddings=sparse_embedding,
|
||||
dense_prompt_embeddings=dense_embedding,
|
||||
)
|
||||
|
||||
if self.use_stability_score:
|
||||
scores = calculate_stability_score(
|
||||
masks, self.model.mask_threshold, self.stability_score_offset
|
||||
)
|
||||
|
||||
if self.return_single_mask:
|
||||
masks, scores = self.select_masks(masks, scores, point_coords.shape[1])
|
||||
|
||||
upscaled_masks = self.mask_postprocessing(masks, orig_im_size)
|
||||
|
||||
if self.return_extra_metrics:
|
||||
stability_scores = calculate_stability_score(
|
||||
upscaled_masks, self.model.mask_threshold, self.stability_score_offset
|
||||
)
|
||||
areas = (upscaled_masks > self.model.mask_threshold).sum(-1).sum(-1)
|
||||
return upscaled_masks, scores, stability_scores, areas, masks
|
||||
|
||||
return upscaled_masks, scores, masks
|
102
segment_anything/utils/transforms.py
Normal file
102
segment_anything/utils/transforms.py
Normal file
@@ -0,0 +1,102 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from torchvision.transforms.functional import resize, to_pil_image # type: ignore
|
||||
|
||||
from copy import deepcopy
|
||||
from typing import Tuple
|
||||
|
||||
|
||||
class ResizeLongestSide:
|
||||
"""
|
||||
Resizes images to longest side 'target_length', as well as provides
|
||||
methods for resizing coordinates and boxes. Provides methods for
|
||||
transforming both numpy array and batched torch tensors.
|
||||
"""
|
||||
|
||||
def __init__(self, target_length: int) -> None:
|
||||
self.target_length = target_length
|
||||
|
||||
def apply_image(self, image: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Expects a numpy array with shape HxWxC in uint8 format.
|
||||
"""
|
||||
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
|
||||
return np.array(resize(to_pil_image(image), target_size))
|
||||
|
||||
def apply_coords(self, coords: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
||||
"""
|
||||
Expects a numpy array of length 2 in the final dimension. Requires the
|
||||
original image size in (H, W) format.
|
||||
"""
|
||||
old_h, old_w = original_size
|
||||
new_h, new_w = self.get_preprocess_shape(
|
||||
original_size[0], original_size[1], self.target_length
|
||||
)
|
||||
coords = deepcopy(coords).astype(float)
|
||||
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||
return coords
|
||||
|
||||
def apply_boxes(self, boxes: np.ndarray, original_size: Tuple[int, ...]) -> np.ndarray:
|
||||
"""
|
||||
Expects a numpy array shape Bx4. Requires the original image size
|
||||
in (H, W) format.
|
||||
"""
|
||||
boxes = self.apply_coords(boxes.reshape(-1, 2, 2), original_size)
|
||||
return boxes.reshape(-1, 4)
|
||||
|
||||
def apply_image_torch(self, image: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Expects batched images with shape BxCxHxW and float format. This
|
||||
transformation may not exactly match apply_image. apply_image is
|
||||
the transformation expected by the model.
|
||||
"""
|
||||
# Expects an image in BCHW format. May not exactly match apply_image.
|
||||
target_size = self.get_preprocess_shape(image.shape[0], image.shape[1], self.target_length)
|
||||
return F.interpolate(
|
||||
image, target_size, mode="bilinear", align_corners=False, antialias=True
|
||||
)
|
||||
|
||||
def apply_coords_torch(
|
||||
self, coords: torch.Tensor, original_size: Tuple[int, ...]
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Expects a torch tensor with length 2 in the last dimension. Requires the
|
||||
original image size in (H, W) format.
|
||||
"""
|
||||
old_h, old_w = original_size
|
||||
new_h, new_w = self.get_preprocess_shape(
|
||||
original_size[0], original_size[1], self.target_length
|
||||
)
|
||||
coords = deepcopy(coords).to(torch.float)
|
||||
coords[..., 0] = coords[..., 0] * (new_w / old_w)
|
||||
coords[..., 1] = coords[..., 1] * (new_h / old_h)
|
||||
return coords
|
||||
|
||||
def apply_boxes_torch(
|
||||
self, boxes: torch.Tensor, original_size: Tuple[int, ...]
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Expects a torch tensor with shape Bx4. Requires the original image
|
||||
size in (H, W) format.
|
||||
"""
|
||||
boxes = self.apply_coords_torch(boxes.reshape(-1, 2, 2), original_size)
|
||||
return boxes.reshape(-1, 4)
|
||||
|
||||
@staticmethod
|
||||
def get_preprocess_shape(oldh: int, oldw: int, long_side_length: int) -> Tuple[int, int]:
|
||||
"""
|
||||
Compute the output size given input size and target long side length.
|
||||
"""
|
||||
scale = long_side_length * 1.0 / max(oldh, oldw)
|
||||
newh, neww = oldh * scale, oldw * scale
|
||||
neww = int(neww + 0.5)
|
||||
newh = int(newh + 0.5)
|
||||
return (newh, neww)
|
Reference in New Issue
Block a user