Initial commit
This commit is contained in:
11
segment_anything/modeling/__init__.py
Normal file
11
segment_anything/modeling/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from .sam import Sam
|
||||
from .image_encoder import ImageEncoderViT
|
||||
from .mask_decoder import MaskDecoder
|
||||
from .prompt_encoder import PromptEncoder
|
||||
from .transformer import TwoWayTransformer
|
43
segment_anything/modeling/common.py
Normal file
43
segment_anything/modeling/common.py
Normal file
@@ -0,0 +1,43 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from typing import Type
|
||||
|
||||
|
||||
class MLPBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
mlp_dim: int,
|
||||
act: Type[nn.Module] = nn.GELU,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
|
||||
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
|
||||
self.act = act()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
return self.lin2(self.act(self.lin1(x)))
|
||||
|
||||
|
||||
# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
|
||||
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa
|
||||
class LayerNorm2d(nn.Module):
|
||||
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
||||
super().__init__()
|
||||
self.weight = nn.Parameter(torch.ones(num_channels))
|
||||
self.bias = nn.Parameter(torch.zeros(num_channels))
|
||||
self.eps = eps
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / torch.sqrt(s + self.eps)
|
||||
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
return x
|
395
segment_anything/modeling/image_encoder.py
Normal file
395
segment_anything/modeling/image_encoder.py
Normal file
@@ -0,0 +1,395 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from typing import Optional, Tuple, Type
|
||||
|
||||
from .common import LayerNorm2d, MLPBlock
|
||||
|
||||
|
||||
# This class and its supporting functions below lightly adapted from the ViTDet backbone available at: https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py # noqa
|
||||
class ImageEncoderViT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
img_size: int = 1024,
|
||||
patch_size: int = 16,
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
depth: int = 12,
|
||||
num_heads: int = 12,
|
||||
mlp_ratio: float = 4.0,
|
||||
out_chans: int = 256,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: Type[nn.Module] = nn.GELU,
|
||||
use_abs_pos: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
global_attn_indexes: Tuple[int, ...] = (),
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
img_size (int): Input image size.
|
||||
patch_size (int): Patch size.
|
||||
in_chans (int): Number of input image channels.
|
||||
embed_dim (int): Patch embedding dimension.
|
||||
depth (int): Depth of ViT.
|
||||
num_heads (int): Number of attention heads in each ViT block.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||
norm_layer (nn.Module): Normalization layer.
|
||||
act_layer (nn.Module): Activation layer.
|
||||
use_abs_pos (bool): If True, use absolute positional embeddings.
|
||||
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
window_size (int): Window size for window attention blocks.
|
||||
global_attn_indexes (list): Indexes for blocks using global attention.
|
||||
"""
|
||||
super().__init__()
|
||||
self.img_size = img_size
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
kernel_size=(patch_size, patch_size),
|
||||
stride=(patch_size, patch_size),
|
||||
in_chans=in_chans,
|
||||
embed_dim=embed_dim,
|
||||
)
|
||||
|
||||
self.pos_embed: Optional[nn.Parameter] = None
|
||||
if use_abs_pos:
|
||||
# Initialize absolute positional embedding with pretrain image size.
|
||||
self.pos_embed = nn.Parameter(
|
||||
torch.zeros(1, img_size // patch_size, img_size // patch_size, embed_dim)
|
||||
)
|
||||
|
||||
self.blocks = nn.ModuleList()
|
||||
for i in range(depth):
|
||||
block = Block(
|
||||
dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
norm_layer=norm_layer,
|
||||
act_layer=act_layer,
|
||||
use_rel_pos=use_rel_pos,
|
||||
rel_pos_zero_init=rel_pos_zero_init,
|
||||
window_size=window_size if i not in global_attn_indexes else 0,
|
||||
input_size=(img_size // patch_size, img_size // patch_size),
|
||||
)
|
||||
self.blocks.append(block)
|
||||
|
||||
self.neck = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
embed_dim,
|
||||
out_chans,
|
||||
kernel_size=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(out_chans),
|
||||
nn.Conv2d(
|
||||
out_chans,
|
||||
out_chans,
|
||||
kernel_size=3,
|
||||
padding=1,
|
||||
bias=False,
|
||||
),
|
||||
LayerNorm2d(out_chans),
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.patch_embed(x)
|
||||
if self.pos_embed is not None:
|
||||
x = x + self.pos_embed
|
||||
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
|
||||
x = self.neck(x.permute(0, 3, 1, 2))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Module):
|
||||
"""Transformer blocks with support of window attention and residual propagation blocks"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qkv_bias: bool = True,
|
||||
norm_layer: Type[nn.Module] = nn.LayerNorm,
|
||||
act_layer: Type[nn.Module] = nn.GELU,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
window_size: int = 0,
|
||||
input_size: Optional[Tuple[int, int]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads in each ViT block.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value.
|
||||
norm_layer (nn.Module): Normalization layer.
|
||||
act_layer (nn.Module): Activation layer.
|
||||
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
window_size (int): Window size for window attention blocks. If it equals 0, then
|
||||
use global attention.
|
||||
input_size (int or None): Input resolution for calculating the relative positional
|
||||
parameter size.
|
||||
"""
|
||||
super().__init__()
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
use_rel_pos=use_rel_pos,
|
||||
rel_pos_zero_init=rel_pos_zero_init,
|
||||
input_size=input_size if window_size == 0 else (window_size, window_size),
|
||||
)
|
||||
|
||||
self.norm2 = norm_layer(dim)
|
||||
self.mlp = MLPBlock(embedding_dim=dim, mlp_dim=int(dim * mlp_ratio), act=act_layer)
|
||||
|
||||
self.window_size = window_size
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
shortcut = x
|
||||
x = self.norm1(x)
|
||||
# Window partition
|
||||
if self.window_size > 0:
|
||||
H, W = x.shape[1], x.shape[2]
|
||||
x, pad_hw = window_partition(x, self.window_size)
|
||||
|
||||
x = self.attn(x)
|
||||
# Reverse window partition
|
||||
if self.window_size > 0:
|
||||
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
|
||||
|
||||
x = shortcut + x
|
||||
x = x + self.mlp(self.norm2(x))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""Multi-head Attention block with relative position embeddings."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_heads: int = 8,
|
||||
qkv_bias: bool = True,
|
||||
use_rel_pos: bool = False,
|
||||
rel_pos_zero_init: bool = True,
|
||||
input_size: Optional[Tuple[int, int]] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool: If True, add a learnable bias to query, key, value.
|
||||
rel_pos (bool): If True, add relative positional embeddings to the attention map.
|
||||
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
|
||||
input_size (int or None): Input resolution for calculating the relative positional
|
||||
parameter size.
|
||||
"""
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
|
||||
self.use_rel_pos = use_rel_pos
|
||||
if self.use_rel_pos:
|
||||
assert (
|
||||
input_size is not None
|
||||
), "Input size must be provided if using relative positional encoding."
|
||||
# initialize relative positional embeddings
|
||||
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
|
||||
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
B, H, W, _ = x.shape
|
||||
# qkv with shape (3, B, nHead, H * W, C)
|
||||
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
# q, k, v with shape (B * nHead, H * W, C)
|
||||
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
|
||||
|
||||
attn = (q * self.scale) @ k.transpose(-2, -1)
|
||||
|
||||
if self.use_rel_pos:
|
||||
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
|
||||
x = self.proj(x)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def window_partition(x: torch.Tensor, window_size: int) -> Tuple[torch.Tensor, Tuple[int, int]]:
|
||||
"""
|
||||
Partition into non-overlapping windows with padding if needed.
|
||||
Args:
|
||||
x (tensor): input tokens with [B, H, W, C].
|
||||
window_size (int): window size.
|
||||
|
||||
Returns:
|
||||
windows: windows after partition with [B * num_windows, window_size, window_size, C].
|
||||
(Hp, Wp): padded height and width before partition
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
|
||||
pad_h = (window_size - H % window_size) % window_size
|
||||
pad_w = (window_size - W % window_size) % window_size
|
||||
if pad_h > 0 or pad_w > 0:
|
||||
x = F.pad(x, (0, 0, 0, pad_w, 0, pad_h))
|
||||
Hp, Wp = H + pad_h, W + pad_w
|
||||
|
||||
x = x.view(B, Hp // window_size, window_size, Wp // window_size, window_size, C)
|
||||
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
||||
return windows, (Hp, Wp)
|
||||
|
||||
|
||||
def window_unpartition(
|
||||
windows: torch.Tensor, window_size: int, pad_hw: Tuple[int, int], hw: Tuple[int, int]
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Window unpartition into original sequences and removing padding.
|
||||
Args:
|
||||
x (tensor): input tokens with [B * num_windows, window_size, window_size, C].
|
||||
window_size (int): window size.
|
||||
pad_hw (Tuple): padded height and width (Hp, Wp).
|
||||
hw (Tuple): original height and width (H, W) before padding.
|
||||
|
||||
Returns:
|
||||
x: unpartitioned sequences with [B, H, W, C].
|
||||
"""
|
||||
Hp, Wp = pad_hw
|
||||
H, W = hw
|
||||
B = windows.shape[0] // (Hp * Wp // window_size // window_size)
|
||||
x = windows.view(B, Hp // window_size, Wp // window_size, window_size, window_size, -1)
|
||||
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, Hp, Wp, -1)
|
||||
|
||||
if Hp > H or Wp > W:
|
||||
x = x[:, :H, :W, :].contiguous()
|
||||
return x
|
||||
|
||||
|
||||
def get_rel_pos(q_size: int, k_size: int, rel_pos: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Get relative positional embeddings according to the relative positions of
|
||||
query and key sizes.
|
||||
Args:
|
||||
q_size (int): size of query q.
|
||||
k_size (int): size of key k.
|
||||
rel_pos (Tensor): relative position embeddings (L, C).
|
||||
|
||||
Returns:
|
||||
Extracted positional embeddings according to relative positions.
|
||||
"""
|
||||
max_rel_dist = int(2 * max(q_size, k_size) - 1)
|
||||
# Interpolate rel pos if needed.
|
||||
if rel_pos.shape[0] != max_rel_dist:
|
||||
# Interpolate rel pos.
|
||||
rel_pos_resized = F.interpolate(
|
||||
rel_pos.reshape(1, rel_pos.shape[0], -1).permute(0, 2, 1),
|
||||
size=max_rel_dist,
|
||||
mode="linear",
|
||||
)
|
||||
rel_pos_resized = rel_pos_resized.reshape(-1, max_rel_dist).permute(1, 0)
|
||||
else:
|
||||
rel_pos_resized = rel_pos
|
||||
|
||||
# Scale the coords with short length if shapes for q and k are different.
|
||||
q_coords = torch.arange(q_size)[:, None] * max(k_size / q_size, 1.0)
|
||||
k_coords = torch.arange(k_size)[None, :] * max(q_size / k_size, 1.0)
|
||||
relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0)
|
||||
|
||||
return rel_pos_resized[relative_coords.long()]
|
||||
|
||||
|
||||
def add_decomposed_rel_pos(
|
||||
attn: torch.Tensor,
|
||||
q: torch.Tensor,
|
||||
rel_pos_h: torch.Tensor,
|
||||
rel_pos_w: torch.Tensor,
|
||||
q_size: Tuple[int, int],
|
||||
k_size: Tuple[int, int],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`.
|
||||
https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py # noqa B950
|
||||
Args:
|
||||
attn (Tensor): attention map.
|
||||
q (Tensor): query q in the attention layer with shape (B, q_h * q_w, C).
|
||||
rel_pos_h (Tensor): relative position embeddings (Lh, C) for height axis.
|
||||
rel_pos_w (Tensor): relative position embeddings (Lw, C) for width axis.
|
||||
q_size (Tuple): spatial sequence size of query q with (q_h, q_w).
|
||||
k_size (Tuple): spatial sequence size of key k with (k_h, k_w).
|
||||
|
||||
Returns:
|
||||
attn (Tensor): attention map with added relative positional embeddings.
|
||||
"""
|
||||
q_h, q_w = q_size
|
||||
k_h, k_w = k_size
|
||||
Rh = get_rel_pos(q_h, k_h, rel_pos_h)
|
||||
Rw = get_rel_pos(q_w, k_w, rel_pos_w)
|
||||
|
||||
B, _, dim = q.shape
|
||||
r_q = q.reshape(B, q_h, q_w, dim)
|
||||
rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
|
||||
rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
|
||||
|
||||
attn = (
|
||||
attn.view(B, q_h, q_w, k_h, k_w) + rel_h[:, :, :, :, None] + rel_w[:, :, :, None, :]
|
||||
).view(B, q_h * q_w, k_h * k_w)
|
||||
|
||||
return attn
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
"""
|
||||
Image to Patch Embedding.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
kernel_size: Tuple[int, int] = (16, 16),
|
||||
stride: Tuple[int, int] = (16, 16),
|
||||
padding: Tuple[int, int] = (0, 0),
|
||||
in_chans: int = 3,
|
||||
embed_dim: int = 768,
|
||||
) -> None:
|
||||
"""
|
||||
Args:
|
||||
kernel_size (Tuple): kernel size of the projection layer.
|
||||
stride (Tuple): stride of the projection layer.
|
||||
padding (Tuple): padding size of the projection layer.
|
||||
in_chans (int): Number of input image channels.
|
||||
embed_dim (int): embed_dim (int): Patch embedding dimension.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.proj = nn.Conv2d(
|
||||
in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding
|
||||
)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
x = self.proj(x)
|
||||
# B C H W -> B H W C
|
||||
x = x.permute(0, 2, 3, 1)
|
||||
return x
|
176
segment_anything/modeling/mask_decoder.py
Normal file
176
segment_anything/modeling/mask_decoder.py
Normal file
@@ -0,0 +1,176 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from typing import List, Tuple, Type
|
||||
|
||||
from .common import LayerNorm2d
|
||||
|
||||
|
||||
class MaskDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
transformer_dim: int,
|
||||
transformer: nn.Module,
|
||||
num_multimask_outputs: int = 3,
|
||||
activation: Type[nn.Module] = nn.GELU,
|
||||
iou_head_depth: int = 3,
|
||||
iou_head_hidden_dim: int = 256,
|
||||
) -> None:
|
||||
"""
|
||||
Predicts masks given an image and prompt embeddings, using a
|
||||
tranformer architecture.
|
||||
|
||||
Arguments:
|
||||
transformer_dim (int): the channel dimension of the transformer
|
||||
transformer (nn.Module): the transformer used to predict masks
|
||||
num_multimask_outputs (int): the number of masks to predict
|
||||
when disambiguating masks
|
||||
activation (nn.Module): the type of activation to use when
|
||||
upscaling masks
|
||||
iou_head_depth (int): the depth of the MLP used to predict
|
||||
mask quality
|
||||
iou_head_hidden_dim (int): the hidden dimension of the MLP
|
||||
used to predict mask quality
|
||||
"""
|
||||
super().__init__()
|
||||
self.transformer_dim = transformer_dim
|
||||
self.transformer = transformer
|
||||
|
||||
self.num_multimask_outputs = num_multimask_outputs
|
||||
|
||||
self.iou_token = nn.Embedding(1, transformer_dim)
|
||||
self.num_mask_tokens = num_multimask_outputs + 1
|
||||
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
||||
|
||||
self.output_upscaling = nn.Sequential(
|
||||
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(transformer_dim // 4),
|
||||
activation(),
|
||||
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
||||
activation(),
|
||||
)
|
||||
self.output_hypernetworks_mlps = nn.ModuleList(
|
||||
[
|
||||
MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
|
||||
for i in range(self.num_mask_tokens)
|
||||
]
|
||||
)
|
||||
|
||||
self.iou_prediction_head = MLP(
|
||||
transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
multimask_output: bool,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Predict masks given image and prompt embeddings.
|
||||
|
||||
Arguments:
|
||||
image_embeddings (torch.Tensor): the embeddings from the image encoder
|
||||
image_pe (torch.Tensor): positional encoding with the shape of image_embeddings
|
||||
sparse_prompt_embeddings (torch.Tensor): the embeddings of the points and boxes
|
||||
dense_prompt_embeddings (torch.Tensor): the embeddings of the mask inputs
|
||||
multimask_output (bool): Whether to return multiple masks or a single
|
||||
mask.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: batched predicted masks
|
||||
torch.Tensor: batched predictions of mask quality
|
||||
"""
|
||||
masks, iou_pred = self.predict_masks(
|
||||
image_embeddings=image_embeddings,
|
||||
image_pe=image_pe,
|
||||
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
||||
dense_prompt_embeddings=dense_prompt_embeddings,
|
||||
)
|
||||
|
||||
# Select the correct mask or masks for outptu
|
||||
if multimask_output:
|
||||
mask_slice = slice(1, None)
|
||||
else:
|
||||
mask_slice = slice(0, 1)
|
||||
masks = masks[:, mask_slice, :, :]
|
||||
iou_pred = iou_pred[:, mask_slice]
|
||||
|
||||
# Prepare output
|
||||
return masks, iou_pred
|
||||
|
||||
def predict_masks(
|
||||
self,
|
||||
image_embeddings: torch.Tensor,
|
||||
image_pe: torch.Tensor,
|
||||
sparse_prompt_embeddings: torch.Tensor,
|
||||
dense_prompt_embeddings: torch.Tensor,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""Predicts masks. See 'forward' for more details."""
|
||||
# Concatenate output tokens
|
||||
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
||||
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
||||
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
||||
|
||||
# Expand per-image data in batch direction to be per-mask
|
||||
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
||||
src = src + dense_prompt_embeddings
|
||||
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
||||
b, c, h, w = src.shape
|
||||
|
||||
# Run the transformer
|
||||
hs, src = self.transformer(src, pos_src, tokens)
|
||||
iou_token_out = hs[:, 0, :]
|
||||
mask_tokens_out = hs[:, 1 : (1 + self.num_mask_tokens), :]
|
||||
|
||||
# Upscale mask embeddings and predict masks using the mask tokens
|
||||
src = src.transpose(1, 2).view(b, c, h, w)
|
||||
upscaled_embedding = self.output_upscaling(src)
|
||||
hyper_in_list: List[torch.Tensor] = []
|
||||
for i in range(self.num_mask_tokens):
|
||||
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
||||
hyper_in = torch.stack(hyper_in_list, dim=1)
|
||||
b, c, h, w = upscaled_embedding.shape
|
||||
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
||||
|
||||
# Generate mask quality predictions
|
||||
iou_pred = self.iou_prediction_head(iou_token_out)
|
||||
|
||||
return masks, iou_pred
|
||||
|
||||
|
||||
# Lightly adapted from
|
||||
# https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py # noqa
|
||||
class MLP(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
input_dim: int,
|
||||
hidden_dim: int,
|
||||
output_dim: int,
|
||||
num_layers: int,
|
||||
sigmoid_output: bool = False,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.num_layers = num_layers
|
||||
h = [hidden_dim] * (num_layers - 1)
|
||||
self.layers = nn.ModuleList(
|
||||
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
|
||||
)
|
||||
self.sigmoid_output = sigmoid_output
|
||||
|
||||
def forward(self, x):
|
||||
for i, layer in enumerate(self.layers):
|
||||
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
||||
if self.sigmoid_output:
|
||||
x = F.sigmoid(x)
|
||||
return x
|
214
segment_anything/modeling/prompt_encoder.py
Normal file
214
segment_anything/modeling/prompt_encoder.py
Normal file
@@ -0,0 +1,214 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from typing import Any, Optional, Tuple, Type
|
||||
|
||||
from .common import LayerNorm2d
|
||||
|
||||
|
||||
class PromptEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim: int,
|
||||
image_embedding_size: Tuple[int, int],
|
||||
input_image_size: Tuple[int, int],
|
||||
mask_in_chans: int,
|
||||
activation: Type[nn.Module] = nn.GELU,
|
||||
) -> None:
|
||||
"""
|
||||
Encodes prompts for input to SAM's mask decoder.
|
||||
|
||||
Arguments:
|
||||
embed_dim (int): The prompts' embedding dimension
|
||||
image_embedding_size (tuple(int, int)): The spatial size of the
|
||||
image embedding, as (H, W).
|
||||
input_image_size (int): The padded size of the image as input
|
||||
to the image encoder, as (H, W).
|
||||
mask_in_chans (int): The number of hidden channels used for
|
||||
encoding input masks.
|
||||
activation (nn.Module): The activation to use when encoding
|
||||
input masks.
|
||||
"""
|
||||
super().__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.input_image_size = input_image_size
|
||||
self.image_embedding_size = image_embedding_size
|
||||
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
||||
|
||||
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
||||
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
||||
self.point_embeddings = nn.ModuleList(point_embeddings)
|
||||
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
||||
|
||||
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
||||
self.mask_downscaling = nn.Sequential(
|
||||
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
||||
LayerNorm2d(mask_in_chans // 4),
|
||||
activation(),
|
||||
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
||||
LayerNorm2d(mask_in_chans),
|
||||
activation(),
|
||||
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
||||
)
|
||||
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
||||
|
||||
def get_dense_pe(self) -> torch.Tensor:
|
||||
"""
|
||||
Returns the positional encoding used to encode point prompts,
|
||||
applied to a dense set of points the shape of the image encoding.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Positional encoding with shape
|
||||
1x(embed_dim)x(embedding_h)x(embedding_w)
|
||||
"""
|
||||
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
||||
|
||||
def _embed_points(
|
||||
self,
|
||||
points: torch.Tensor,
|
||||
labels: torch.Tensor,
|
||||
pad: bool,
|
||||
) -> torch.Tensor:
|
||||
"""Embeds point prompts."""
|
||||
points = points + 0.5 # Shift to center of pixel
|
||||
if pad:
|
||||
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
||||
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
||||
points = torch.cat([points, padding_point], dim=1)
|
||||
labels = torch.cat([labels, padding_label], dim=1)
|
||||
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
||||
point_embedding[labels == -1] = 0.0
|
||||
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
||||
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
||||
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
||||
return point_embedding
|
||||
|
||||
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
||||
"""Embeds box prompts."""
|
||||
boxes = boxes + 0.5 # Shift to center of pixel
|
||||
coords = boxes.reshape(-1, 2, 2)
|
||||
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
||||
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
||||
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
||||
return corner_embedding
|
||||
|
||||
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
||||
"""Embeds mask inputs."""
|
||||
mask_embedding = self.mask_downscaling(masks)
|
||||
return mask_embedding
|
||||
|
||||
def _get_batch_size(
|
||||
self,
|
||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||
boxes: Optional[torch.Tensor],
|
||||
masks: Optional[torch.Tensor],
|
||||
) -> int:
|
||||
"""
|
||||
Gets the batch size of the output given the batch size of the input prompts.
|
||||
"""
|
||||
if points is not None:
|
||||
return points[0].shape[0]
|
||||
elif boxes is not None:
|
||||
return boxes.shape[0]
|
||||
elif masks is not None:
|
||||
return masks.shape[0]
|
||||
else:
|
||||
return 1
|
||||
|
||||
def _get_device(self) -> torch.device:
|
||||
return self.point_embeddings[0].weight.device
|
||||
|
||||
def forward(
|
||||
self,
|
||||
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
||||
boxes: Optional[torch.Tensor],
|
||||
masks: Optional[torch.Tensor],
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
"""
|
||||
Embeds different types of prompts, returning both sparse and dense
|
||||
embeddings.
|
||||
|
||||
Arguments:
|
||||
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
||||
and labels to embed.
|
||||
boxes (torch.Tensor or none): boxes to embed
|
||||
masks (torch.Tensor or none): masks to embed
|
||||
|
||||
Returns:
|
||||
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
||||
BxNx(embed_dim), where N is determined by the number of input points
|
||||
and boxes.
|
||||
torch.Tensor: dense embeddings for the masks, in the shape
|
||||
Bx(embed_dim)x(embed_H)x(embed_W)
|
||||
"""
|
||||
bs = self._get_batch_size(points, boxes, masks)
|
||||
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
||||
if points is not None:
|
||||
coords, labels = points
|
||||
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
||||
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
||||
if boxes is not None:
|
||||
box_embeddings = self._embed_boxes(boxes)
|
||||
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
||||
|
||||
if masks is not None:
|
||||
dense_embeddings = self._embed_masks(masks)
|
||||
else:
|
||||
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
||||
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
||||
)
|
||||
|
||||
return sparse_embeddings, dense_embeddings
|
||||
|
||||
|
||||
class PositionEmbeddingRandom(nn.Module):
|
||||
"""
|
||||
Positional encoding using random spatial frequencies.
|
||||
"""
|
||||
|
||||
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
||||
super().__init__()
|
||||
if scale is None or scale <= 0.0:
|
||||
scale = 1.0
|
||||
self.register_buffer(
|
||||
"positional_encoding_gaussian_matrix",
|
||||
scale * torch.randn((2, num_pos_feats)),
|
||||
)
|
||||
|
||||
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
||||
"""Positionally encode points that are normalized to [0,1]."""
|
||||
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
||||
coords = 2 * coords - 1
|
||||
coords = coords @ self.positional_encoding_gaussian_matrix
|
||||
coords = 2 * np.pi * coords
|
||||
# outputs d_1 x ... x d_n x C shape
|
||||
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
||||
|
||||
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
||||
"""Generate positional encoding for a grid of the specified size."""
|
||||
h, w = size
|
||||
device: Any = self.positional_encoding_gaussian_matrix.device
|
||||
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
||||
y_embed = grid.cumsum(dim=0) - 0.5
|
||||
x_embed = grid.cumsum(dim=1) - 0.5
|
||||
y_embed = y_embed / h
|
||||
x_embed = x_embed / w
|
||||
|
||||
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
||||
return pe.permute(2, 0, 1) # C x H x W
|
||||
|
||||
def forward_with_coords(
|
||||
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
||||
) -> torch.Tensor:
|
||||
"""Positionally encode points that are not normalized to [0,1]."""
|
||||
coords = coords_input.clone()
|
||||
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
||||
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
||||
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
174
segment_anything/modeling/sam.py
Normal file
174
segment_anything/modeling/sam.py
Normal file
@@ -0,0 +1,174 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from typing import Any, Dict, List, Tuple
|
||||
|
||||
from .image_encoder import ImageEncoderViT
|
||||
from .mask_decoder import MaskDecoder
|
||||
from .prompt_encoder import PromptEncoder
|
||||
|
||||
|
||||
class Sam(nn.Module):
|
||||
mask_threshold: float = 0.0
|
||||
image_format: str = "RGB"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
image_encoder: ImageEncoderViT,
|
||||
prompt_encoder: PromptEncoder,
|
||||
mask_decoder: MaskDecoder,
|
||||
pixel_mean: List[float] = [123.675, 116.28, 103.53],
|
||||
pixel_std: List[float] = [58.395, 57.12, 57.375],
|
||||
) -> None:
|
||||
"""
|
||||
SAM predicts object masks from an image and input prompts.
|
||||
|
||||
Arguments:
|
||||
image_encoder (ImageEncoderViT): The backbone used to encode the
|
||||
image into image embeddings that allow for efficient mask prediction.
|
||||
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
||||
mask_decoder (MaskDecoder): Predicts masks from the image embeddings
|
||||
and encoded prompts.
|
||||
pixel_mean (list(float)): Mean values for normalizing pixels in the input image.
|
||||
pixel_std (list(float)): Std values for normalizing pixels in the input image.
|
||||
"""
|
||||
super().__init__()
|
||||
self.image_encoder = image_encoder
|
||||
self.prompt_encoder = prompt_encoder
|
||||
self.mask_decoder = mask_decoder
|
||||
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
|
||||
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
|
||||
|
||||
@property
|
||||
def device(self) -> Any:
|
||||
return self.pixel_mean.device
|
||||
|
||||
@torch.no_grad()
|
||||
def forward(
|
||||
self,
|
||||
batched_input: List[Dict[str, Any]],
|
||||
multimask_output: bool,
|
||||
) -> List[Dict[str, torch.Tensor]]:
|
||||
"""
|
||||
Predicts masks end-to-end from provided images and prompts.
|
||||
If prompts are not known in advance, using SamPredictor is
|
||||
recommended over calling the model directly.
|
||||
|
||||
Arguments:
|
||||
batched_input (list(dict)): A list over input images, each a
|
||||
dictionary with the following keys. A prompt key can be
|
||||
excluded if it is not present.
|
||||
'image': The image as a torch tensor in 3xHxW format,
|
||||
already transformed for input to the model.
|
||||
'original_size': (tuple(int, int)) The original size of
|
||||
the image before transformation, as (H, W).
|
||||
'point_coords': (torch.Tensor) Batched point prompts for
|
||||
this image, with shape BxNx2. Already transformed to the
|
||||
input frame of the model.
|
||||
'point_labels': (torch.Tensor) Batched labels for point prompts,
|
||||
with shape BxN.
|
||||
'boxes': (torch.Tensor) Batched box inputs, with shape Bx4.
|
||||
Already transformed to the input frame of the model.
|
||||
'mask_inputs': (torch.Tensor) Batched mask inputs to the model,
|
||||
in the form Bx1xHxW.
|
||||
multimask_output (bool): Whether the model should predict multiple
|
||||
disambiguating masks, or return a single mask.
|
||||
|
||||
Returns:
|
||||
(list(dict)): A list over input images, where each element is
|
||||
as dictionary with the following keys.
|
||||
'masks': (torch.Tensor) Batched binary mask predictions,
|
||||
with shape BxCxHxW, where B is the number of input promts,
|
||||
C is determiend by multimask_output, and (H, W) is the
|
||||
original size of the image.
|
||||
'iou_predictions': (torch.Tensor) The model's predictions
|
||||
of mask quality, in shape BxC.
|
||||
'low_res_logits': (torch.Tensor) Low resolution logits with
|
||||
shape BxCxHxW, where H=W=256. Can be passed as mask input
|
||||
to subsequent iterations of prediction.
|
||||
"""
|
||||
input_images = torch.stack([self.preprocess(x["image"]) for x in batched_input], dim=0)
|
||||
image_embeddings = self.image_encoder(input_images)
|
||||
|
||||
outputs = []
|
||||
for image_record, curr_embedding in zip(batched_input, image_embeddings):
|
||||
if "point_coords" in image_record:
|
||||
points = (image_record["point_coords"], image_record["point_labels"])
|
||||
else:
|
||||
points = None
|
||||
sparse_embeddings, dense_embeddings = self.prompt_encoder(
|
||||
points=points,
|
||||
boxes=image_record.get("boxes", None),
|
||||
masks=image_record.get("mask_inputs", None),
|
||||
)
|
||||
low_res_masks, iou_predictions = self.mask_decoder(
|
||||
image_embeddings=curr_embedding.unsqueeze(0),
|
||||
image_pe=self.prompt_encoder.get_dense_pe(),
|
||||
sparse_prompt_embeddings=sparse_embeddings,
|
||||
dense_prompt_embeddings=dense_embeddings,
|
||||
multimask_output=multimask_output,
|
||||
)
|
||||
masks = self.postprocess_masks(
|
||||
low_res_masks,
|
||||
input_size=image_record["image"].shape[-2:],
|
||||
original_size=image_record["original_size"],
|
||||
)
|
||||
masks = masks > self.mask_threshold
|
||||
outputs.append(
|
||||
{
|
||||
"masks": masks,
|
||||
"iou_predictions": iou_predictions,
|
||||
"low_res_logits": low_res_masks,
|
||||
}
|
||||
)
|
||||
return outputs
|
||||
|
||||
def postprocess_masks(
|
||||
self,
|
||||
masks: torch.Tensor,
|
||||
input_size: Tuple[int, ...],
|
||||
original_size: Tuple[int, ...],
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Remove padding and upscale masks to the original image size.
|
||||
|
||||
Arguments:
|
||||
masks (torch.Tensor): Batched masks from the mask_decoder,
|
||||
in BxCxHxW format.
|
||||
input_size (tuple(int, int)): The size of the image input to the
|
||||
model, in (H, W) format. Used to remove padding.
|
||||
original_size (tuple(int, int)): The original size of the image
|
||||
before resizing for input to the model, in (H, W) format.
|
||||
|
||||
Returns:
|
||||
(torch.Tensor): Batched masks in BxCxHxW format, where (H, W)
|
||||
is given by original_size.
|
||||
"""
|
||||
masks = F.interpolate(
|
||||
masks,
|
||||
(self.image_encoder.img_size, self.image_encoder.img_size),
|
||||
mode="bilinear",
|
||||
align_corners=False,
|
||||
)
|
||||
masks = masks[..., : input_size[0], : input_size[1]]
|
||||
masks = F.interpolate(masks, original_size, mode="bilinear", align_corners=False)
|
||||
return masks
|
||||
|
||||
def preprocess(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""Normalize pixel values and pad to a square input."""
|
||||
# Normalize colors
|
||||
x = (x - self.pixel_mean) / self.pixel_std
|
||||
|
||||
# Pad
|
||||
h, w = x.shape[-2:]
|
||||
padh = self.image_encoder.img_size - h
|
||||
padw = self.image_encoder.img_size - w
|
||||
x = F.pad(x, (0, padw, 0, padh))
|
||||
return x
|
240
segment_anything/modeling/transformer.py
Normal file
240
segment_anything/modeling/transformer.py
Normal file
@@ -0,0 +1,240 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
import math
|
||||
from typing import Tuple, Type
|
||||
|
||||
from .common import MLPBlock
|
||||
|
||||
|
||||
class TwoWayTransformer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
depth: int,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
mlp_dim: int,
|
||||
activation: Type[nn.Module] = nn.ReLU,
|
||||
attention_downsample_rate: int = 2,
|
||||
) -> None:
|
||||
"""
|
||||
A transformer decoder that attends to an input image using
|
||||
queries whose positional embedding is supplied.
|
||||
|
||||
Args:
|
||||
depth (int): number of layers in the transformer
|
||||
embedding_dim (int): the channel dimension for the input embeddings
|
||||
num_heads (int): the number of heads for multihead attention. Must
|
||||
divide embedding_dim
|
||||
mlp_dim (int): the channel dimension internal to the MLP block
|
||||
activation (nn.Module): the activation to use in the MLP block
|
||||
"""
|
||||
super().__init__()
|
||||
self.depth = depth
|
||||
self.embedding_dim = embedding_dim
|
||||
self.num_heads = num_heads
|
||||
self.mlp_dim = mlp_dim
|
||||
self.layers = nn.ModuleList()
|
||||
|
||||
for i in range(depth):
|
||||
self.layers.append(
|
||||
TwoWayAttentionBlock(
|
||||
embedding_dim=embedding_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_dim=mlp_dim,
|
||||
activation=activation,
|
||||
attention_downsample_rate=attention_downsample_rate,
|
||||
skip_first_layer_pe=(i == 0),
|
||||
)
|
||||
)
|
||||
|
||||
self.final_attn_token_to_image = Attention(
|
||||
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||
)
|
||||
self.norm_final_attn = nn.LayerNorm(embedding_dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_embedding: Tensor,
|
||||
image_pe: Tensor,
|
||||
point_embedding: Tensor,
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
"""
|
||||
Args:
|
||||
image_embedding (torch.Tensor): image to attend to. Should be shape
|
||||
B x embedding_dim x h x w for any h and w.
|
||||
image_pe (torch.Tensor): the positional encoding to add to the image. Must
|
||||
have the same shape as image_embedding.
|
||||
point_embedding (torch.Tensor): the embedding to add to the query points.
|
||||
Must have shape B x N_points x embedding_dim for any N_points.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: the processed point_embedding
|
||||
torch.Tensor: the processed image_embedding
|
||||
"""
|
||||
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
||||
bs, c, h, w = image_embedding.shape
|
||||
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
||||
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
||||
|
||||
# Prepare queries
|
||||
queries = point_embedding
|
||||
keys = image_embedding
|
||||
|
||||
# Apply transformer blocks and final layernorm
|
||||
for layer in self.layers:
|
||||
queries, keys = layer(
|
||||
queries=queries,
|
||||
keys=keys,
|
||||
query_pe=point_embedding,
|
||||
key_pe=image_pe,
|
||||
)
|
||||
|
||||
# Apply the final attenion layer from the points to the image
|
||||
q = queries + point_embedding
|
||||
k = keys + image_pe
|
||||
attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm_final_attn(queries)
|
||||
|
||||
return queries, keys
|
||||
|
||||
|
||||
class TwoWayAttentionBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
mlp_dim: int = 2048,
|
||||
activation: Type[nn.Module] = nn.ReLU,
|
||||
attention_downsample_rate: int = 2,
|
||||
skip_first_layer_pe: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
A transformer block with four layers: (1) self-attention of sparse
|
||||
inputs, (2) cross attention of sparse inputs to dense inputs, (3) mlp
|
||||
block on sparse inputs, and (4) cross attention of dense inputs to sparse
|
||||
inputs.
|
||||
|
||||
Arguments:
|
||||
embedding_dim (int): the channel dimension of the embeddings
|
||||
num_heads (int): the number of heads in the attention layers
|
||||
mlp_dim (int): the hidden dimension of the mlp block
|
||||
activation (nn.Module): the activation of the mlp block
|
||||
skip_first_layer_pe (bool): skip the PE on the first layer
|
||||
"""
|
||||
super().__init__()
|
||||
self.self_attn = Attention(embedding_dim, num_heads)
|
||||
self.norm1 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.cross_attn_token_to_image = Attention(
|
||||
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||
)
|
||||
self.norm2 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
|
||||
self.norm3 = nn.LayerNorm(embedding_dim)
|
||||
|
||||
self.norm4 = nn.LayerNorm(embedding_dim)
|
||||
self.cross_attn_image_to_token = Attention(
|
||||
embedding_dim, num_heads, downsample_rate=attention_downsample_rate
|
||||
)
|
||||
|
||||
self.skip_first_layer_pe = skip_first_layer_pe
|
||||
|
||||
def forward(
|
||||
self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
|
||||
) -> Tuple[Tensor, Tensor]:
|
||||
# Self attention block
|
||||
if self.skip_first_layer_pe:
|
||||
queries = self.self_attn(q=queries, k=queries, v=queries)
|
||||
else:
|
||||
q = queries + query_pe
|
||||
attn_out = self.self_attn(q=q, k=q, v=queries)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm1(queries)
|
||||
|
||||
# Cross attention block, tokens attending to image embedding
|
||||
q = queries + query_pe
|
||||
k = keys + key_pe
|
||||
attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)
|
||||
queries = queries + attn_out
|
||||
queries = self.norm2(queries)
|
||||
|
||||
# MLP block
|
||||
mlp_out = self.mlp(queries)
|
||||
queries = queries + mlp_out
|
||||
queries = self.norm3(queries)
|
||||
|
||||
# Cross attention block, image embedding attending to tokens
|
||||
q = queries + query_pe
|
||||
k = keys + key_pe
|
||||
attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)
|
||||
keys = keys + attn_out
|
||||
keys = self.norm4(keys)
|
||||
|
||||
return queries, keys
|
||||
|
||||
|
||||
class Attention(nn.Module):
|
||||
"""
|
||||
An attention layer that allows for downscaling the size of the embedding
|
||||
after projection to queries, keys, and values.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
num_heads: int,
|
||||
downsample_rate: int = 1,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.internal_dim = embedding_dim // downsample_rate
|
||||
self.num_heads = num_heads
|
||||
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
||||
|
||||
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.k_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.v_proj = nn.Linear(embedding_dim, self.internal_dim)
|
||||
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
||||
|
||||
def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
|
||||
b, n, c = x.shape
|
||||
x = x.reshape(b, n, num_heads, c // num_heads)
|
||||
return x.transpose(1, 2) # B x N_heads x N_tokens x C_per_head
|
||||
|
||||
def _recombine_heads(self, x: Tensor) -> Tensor:
|
||||
b, n_heads, n_tokens, c_per_head = x.shape
|
||||
x = x.transpose(1, 2)
|
||||
return x.reshape(b, n_tokens, n_heads * c_per_head) # B x N_tokens x C
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
||||
# Input projections
|
||||
q = self.q_proj(q)
|
||||
k = self.k_proj(k)
|
||||
v = self.v_proj(v)
|
||||
|
||||
# Separate into heads
|
||||
q = self._separate_heads(q, self.num_heads)
|
||||
k = self._separate_heads(k, self.num_heads)
|
||||
v = self._separate_heads(v, self.num_heads)
|
||||
|
||||
# Attention
|
||||
_, _, _, c_per_head = q.shape
|
||||
attn = q @ k.permute(0, 1, 3, 2) # B x N_heads x N_tokens x N_tokens
|
||||
attn = attn / math.sqrt(c_per_head)
|
||||
attn = torch.softmax(attn, dim=-1)
|
||||
|
||||
# Get output
|
||||
out = attn @ v
|
||||
out = self._recombine_heads(out)
|
||||
out = self.out_proj(out)
|
||||
|
||||
return out
|
Reference in New Issue
Block a user