* support deepseek field "reasoning_content" * support deepseek field "reasoning_content" * Comment ends in a period (godot) * add comment on field reasoning_content * fix go lint error * chore: trigger CI * make field "content" in MarshalJSON function omitempty * remove reasoning_content in TestO1ModelChatCompletions func * feat: Add test and handler for deepseek-reasoner chat model completions, including support for reasoning content in responses. * feat: Add test and handler for deepseek-reasoner chat model completions, including support for reasoning content in responses. * feat: Add test and handler for deepseek-reasoner chat model completions, including support for reasoning content in responses.
949 lines
27 KiB
Go
949 lines
27 KiB
Go
package openai_test
|
|
|
|
import (
|
|
"context"
|
|
"encoding/json"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"net/http"
|
|
"strconv"
|
|
"strings"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/sashabaranov/go-openai"
|
|
"github.com/sashabaranov/go-openai/internal/test/checks"
|
|
"github.com/sashabaranov/go-openai/jsonschema"
|
|
)
|
|
|
|
const (
|
|
xCustomHeader = "X-CUSTOM-HEADER"
|
|
xCustomHeaderValue = "test"
|
|
)
|
|
|
|
var rateLimitHeaders = map[string]any{
|
|
"x-ratelimit-limit-requests": 60,
|
|
"x-ratelimit-limit-tokens": 150000,
|
|
"x-ratelimit-remaining-requests": 59,
|
|
"x-ratelimit-remaining-tokens": 149984,
|
|
"x-ratelimit-reset-requests": "1s",
|
|
"x-ratelimit-reset-tokens": "6m0s",
|
|
}
|
|
|
|
func TestChatCompletionsWrongModel(t *testing.T) {
|
|
config := openai.DefaultConfig("whatever")
|
|
config.BaseURL = "http://localhost/v1"
|
|
client := openai.NewClientWithConfig(config)
|
|
ctx := context.Background()
|
|
|
|
req := openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: "ada",
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
}
|
|
_, err := client.CreateChatCompletion(ctx, req)
|
|
msg := fmt.Sprintf("CreateChatCompletion should return wrong model error, returned: %s", err)
|
|
checks.ErrorIs(t, err, openai.ErrChatCompletionInvalidModel, msg)
|
|
}
|
|
|
|
func TestO1ModelsChatCompletionsDeprecatedFields(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
in openai.ChatCompletionRequest
|
|
expectedError error
|
|
}{
|
|
{
|
|
name: "o1-preview_MaxTokens_deprecated",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.O1Preview,
|
|
},
|
|
expectedError: openai.ErrReasoningModelMaxTokensDeprecated,
|
|
},
|
|
{
|
|
name: "o1-mini_MaxTokens_deprecated",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.O1Mini,
|
|
},
|
|
expectedError: openai.ErrReasoningModelMaxTokensDeprecated,
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
config := openai.DefaultConfig("whatever")
|
|
config.BaseURL = "http://localhost/v1"
|
|
client := openai.NewClientWithConfig(config)
|
|
ctx := context.Background()
|
|
|
|
_, err := client.CreateChatCompletion(ctx, tt.in)
|
|
checks.HasError(t, err)
|
|
msg := fmt.Sprintf("CreateChatCompletion should return wrong model error, returned: %s", err)
|
|
checks.ErrorIs(t, err, tt.expectedError, msg)
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestO1ModelsChatCompletionsBetaLimitations(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
in openai.ChatCompletionRequest
|
|
expectedError error
|
|
}{
|
|
{
|
|
name: "log_probs_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
LogProbs: true,
|
|
Model: openai.O1Preview,
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsLogprobs,
|
|
},
|
|
{
|
|
name: "set_temperature_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O1Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
Temperature: float32(2),
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
{
|
|
name: "set_top_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O1Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
Temperature: float32(1),
|
|
TopP: float32(0.1),
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
{
|
|
name: "set_n_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O1Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
Temperature: float32(1),
|
|
TopP: float32(1),
|
|
N: 2,
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
{
|
|
name: "set_presence_penalty_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O1Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
PresencePenalty: float32(1),
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
{
|
|
name: "set_frequency_penalty_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O1Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
FrequencyPenalty: float32(0.1),
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
config := openai.DefaultConfig("whatever")
|
|
config.BaseURL = "http://localhost/v1"
|
|
client := openai.NewClientWithConfig(config)
|
|
ctx := context.Background()
|
|
|
|
_, err := client.CreateChatCompletion(ctx, tt.in)
|
|
checks.HasError(t, err)
|
|
msg := fmt.Sprintf("CreateChatCompletion should return wrong model error, returned: %s", err)
|
|
checks.ErrorIs(t, err, tt.expectedError, msg)
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestO3ModelsChatCompletionsBetaLimitations(t *testing.T) {
|
|
tests := []struct {
|
|
name string
|
|
in openai.ChatCompletionRequest
|
|
expectedError error
|
|
}{
|
|
{
|
|
name: "log_probs_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
LogProbs: true,
|
|
Model: openai.O3Mini,
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsLogprobs,
|
|
},
|
|
{
|
|
name: "set_temperature_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O3Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
Temperature: float32(2),
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
{
|
|
name: "set_top_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O3Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
Temperature: float32(1),
|
|
TopP: float32(0.1),
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
{
|
|
name: "set_n_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O3Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
Temperature: float32(1),
|
|
TopP: float32(1),
|
|
N: 2,
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
{
|
|
name: "set_presence_penalty_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O3Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
PresencePenalty: float32(1),
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
{
|
|
name: "set_frequency_penalty_unsupported",
|
|
in: openai.ChatCompletionRequest{
|
|
MaxCompletionTokens: 1000,
|
|
Model: openai.O3Mini,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
},
|
|
{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
},
|
|
},
|
|
FrequencyPenalty: float32(0.1),
|
|
},
|
|
expectedError: openai.ErrReasoningModelLimitationsOther,
|
|
},
|
|
}
|
|
|
|
for _, tt := range tests {
|
|
t.Run(tt.name, func(t *testing.T) {
|
|
config := openai.DefaultConfig("whatever")
|
|
config.BaseURL = "http://localhost/v1"
|
|
client := openai.NewClientWithConfig(config)
|
|
ctx := context.Background()
|
|
|
|
_, err := client.CreateChatCompletion(ctx, tt.in)
|
|
checks.HasError(t, err)
|
|
msg := fmt.Sprintf("CreateChatCompletion should return wrong model error, returned: %s", err)
|
|
checks.ErrorIs(t, err, tt.expectedError, msg)
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestChatRequestOmitEmpty(t *testing.T) {
|
|
data, err := json.Marshal(openai.ChatCompletionRequest{
|
|
// We set model b/c it's required, so omitempty doesn't make sense
|
|
Model: "gpt-4",
|
|
})
|
|
checks.NoError(t, err)
|
|
|
|
// messages is also required so isn't omitted
|
|
const expected = `{"model":"gpt-4","messages":null}`
|
|
if string(data) != expected {
|
|
t.Errorf("expected JSON with all empty fields to be %v but was %v", expected, string(data))
|
|
}
|
|
}
|
|
|
|
func TestChatCompletionsWithStream(t *testing.T) {
|
|
config := openai.DefaultConfig("whatever")
|
|
config.BaseURL = "http://localhost/v1"
|
|
client := openai.NewClientWithConfig(config)
|
|
ctx := context.Background()
|
|
|
|
req := openai.ChatCompletionRequest{
|
|
Stream: true,
|
|
}
|
|
_, err := client.CreateChatCompletion(ctx, req)
|
|
checks.ErrorIs(t, err, openai.ErrChatCompletionStreamNotSupported, "unexpected error")
|
|
}
|
|
|
|
// TestCompletions Tests the completions endpoint of the API using the mocked server.
|
|
func TestChatCompletions(t *testing.T) {
|
|
client, server, teardown := setupOpenAITestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/v1/chat/completions", handleChatCompletionEndpoint)
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion error")
|
|
}
|
|
|
|
// TestCompletions Tests the completions endpoint of the API using the mocked server.
|
|
func TestO1ModelChatCompletions(t *testing.T) {
|
|
client, server, teardown := setupOpenAITestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/v1/chat/completions", handleChatCompletionEndpoint)
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
Model: openai.O1Preview,
|
|
MaxCompletionTokens: 1000,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion error")
|
|
}
|
|
|
|
func TestO3ModelChatCompletions(t *testing.T) {
|
|
client, server, teardown := setupOpenAITestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/v1/chat/completions", handleChatCompletionEndpoint)
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
Model: openai.O3Mini,
|
|
MaxCompletionTokens: 1000,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion error")
|
|
}
|
|
|
|
func TestDeepseekR1ModelChatCompletions(t *testing.T) {
|
|
client, server, teardown := setupOpenAITestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/v1/chat/completions", handleDeepseekR1ChatCompletionEndpoint)
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
Model: "deepseek-reasoner",
|
|
MaxCompletionTokens: 100,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion error")
|
|
}
|
|
|
|
// TestCompletions Tests the completions endpoint of the API using the mocked server.
|
|
func TestChatCompletionsWithHeaders(t *testing.T) {
|
|
client, server, teardown := setupOpenAITestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/v1/chat/completions", handleChatCompletionEndpoint)
|
|
resp, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion error")
|
|
|
|
a := resp.Header().Get(xCustomHeader)
|
|
_ = a
|
|
if resp.Header().Get(xCustomHeader) != xCustomHeaderValue {
|
|
t.Errorf("expected header %s to be %s", xCustomHeader, xCustomHeaderValue)
|
|
}
|
|
}
|
|
|
|
// TestChatCompletionsWithRateLimitHeaders Tests the completions endpoint of the API using the mocked server.
|
|
func TestChatCompletionsWithRateLimitHeaders(t *testing.T) {
|
|
client, server, teardown := setupOpenAITestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/v1/chat/completions", handleChatCompletionEndpoint)
|
|
resp, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion error")
|
|
|
|
headers := resp.GetRateLimitHeaders()
|
|
resetRequests := headers.ResetRequests.String()
|
|
if resetRequests != rateLimitHeaders["x-ratelimit-reset-requests"] {
|
|
t.Errorf("expected resetRequests %s to be %s", resetRequests, rateLimitHeaders["x-ratelimit-reset-requests"])
|
|
}
|
|
resetRequestsTime := headers.ResetRequests.Time()
|
|
if resetRequestsTime.Before(time.Now()) {
|
|
t.Errorf("unexpected reset requests: %v", resetRequestsTime)
|
|
}
|
|
|
|
bs1, _ := json.Marshal(headers)
|
|
bs2, _ := json.Marshal(rateLimitHeaders)
|
|
if string(bs1) != string(bs2) {
|
|
t.Errorf("expected rate limit header %s to be %s", bs2, bs1)
|
|
}
|
|
}
|
|
|
|
// TestChatCompletionsFunctions tests including a function call.
|
|
func TestChatCompletionsFunctions(t *testing.T) {
|
|
client, server, teardown := setupOpenAITestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/v1/chat/completions", handleChatCompletionEndpoint)
|
|
t.Run("bytes", func(t *testing.T) {
|
|
//nolint:lll
|
|
msg := json.RawMessage(`{"properties":{"count":{"type":"integer","description":"total number of words in sentence"},"words":{"items":{"type":"string"},"type":"array","description":"list of words in sentence"}},"type":"object","required":["count","words"]}`)
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo0613,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
Functions: []openai.FunctionDefinition{{
|
|
Name: "test",
|
|
Parameters: &msg,
|
|
}},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion with functions error")
|
|
})
|
|
t.Run("struct", func(t *testing.T) {
|
|
type testMessage struct {
|
|
Count int `json:"count"`
|
|
Words []string `json:"words"`
|
|
}
|
|
msg := testMessage{
|
|
Count: 2,
|
|
Words: []string{"hello", "world"},
|
|
}
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo0613,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
Functions: []openai.FunctionDefinition{{
|
|
Name: "test",
|
|
Parameters: &msg,
|
|
}},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion with functions error")
|
|
})
|
|
t.Run("JSONSchemaDefinition", func(t *testing.T) {
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo0613,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
Functions: []openai.FunctionDefinition{{
|
|
Name: "test",
|
|
Parameters: &jsonschema.Definition{
|
|
Type: jsonschema.Object,
|
|
Properties: map[string]jsonschema.Definition{
|
|
"count": {
|
|
Type: jsonschema.Number,
|
|
Description: "total number of words in sentence",
|
|
},
|
|
"words": {
|
|
Type: jsonschema.Array,
|
|
Description: "list of words in sentence",
|
|
Items: &jsonschema.Definition{
|
|
Type: jsonschema.String,
|
|
},
|
|
},
|
|
"enumTest": {
|
|
Type: jsonschema.String,
|
|
Enum: []string{"hello", "world"},
|
|
},
|
|
},
|
|
},
|
|
}},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion with functions error")
|
|
})
|
|
t.Run("JSONSchemaDefinitionWithFunctionDefine", func(t *testing.T) {
|
|
// this is a compatibility check
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo0613,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
Functions: []openai.FunctionDefine{{
|
|
Name: "test",
|
|
Parameters: &jsonschema.Definition{
|
|
Type: jsonschema.Object,
|
|
Properties: map[string]jsonschema.Definition{
|
|
"count": {
|
|
Type: jsonschema.Number,
|
|
Description: "total number of words in sentence",
|
|
},
|
|
"words": {
|
|
Type: jsonschema.Array,
|
|
Description: "list of words in sentence",
|
|
Items: &jsonschema.Definition{
|
|
Type: jsonschema.String,
|
|
},
|
|
},
|
|
"enumTest": {
|
|
Type: jsonschema.String,
|
|
Enum: []string{"hello", "world"},
|
|
},
|
|
},
|
|
},
|
|
}},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion with functions error")
|
|
})
|
|
t.Run("StructuredOutputs", func(t *testing.T) {
|
|
type testMessage struct {
|
|
Count int `json:"count"`
|
|
Words []string `json:"words"`
|
|
}
|
|
msg := testMessage{
|
|
Count: 2,
|
|
Words: []string{"hello", "world"},
|
|
}
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo0613,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
Functions: []openai.FunctionDefinition{{
|
|
Name: "test",
|
|
Strict: true,
|
|
Parameters: &msg,
|
|
}},
|
|
})
|
|
checks.NoError(t, err, "CreateChatCompletion with functions error")
|
|
})
|
|
}
|
|
|
|
func TestAzureChatCompletions(t *testing.T) {
|
|
client, server, teardown := setupAzureTestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/openai/deployments/*", handleChatCompletionEndpoint)
|
|
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
Content: "Hello!",
|
|
},
|
|
},
|
|
})
|
|
checks.NoError(t, err, "CreateAzureChatCompletion error")
|
|
}
|
|
|
|
func TestMultipartChatCompletions(t *testing.T) {
|
|
client, server, teardown := setupAzureTestServer()
|
|
defer teardown()
|
|
server.RegisterHandler("/openai/deployments/*", handleChatCompletionEndpoint)
|
|
|
|
_, err := client.CreateChatCompletion(context.Background(), openai.ChatCompletionRequest{
|
|
MaxTokens: 5,
|
|
Model: openai.GPT3Dot5Turbo,
|
|
Messages: []openai.ChatCompletionMessage{
|
|
{
|
|
Role: openai.ChatMessageRoleUser,
|
|
MultiContent: []openai.ChatMessagePart{
|
|
{
|
|
Type: openai.ChatMessagePartTypeText,
|
|
Text: "Hello!",
|
|
},
|
|
{
|
|
Type: openai.ChatMessagePartTypeImageURL,
|
|
ImageURL: &openai.ChatMessageImageURL{
|
|
URL: "URL",
|
|
Detail: openai.ImageURLDetailLow,
|
|
},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
})
|
|
checks.NoError(t, err, "CreateAzureChatCompletion error")
|
|
}
|
|
|
|
func TestMultipartChatMessageSerialization(t *testing.T) {
|
|
jsonText := `[{"role":"system","content":"system-message"},` +
|
|
`{"role":"user","content":[{"type":"text","text":"nice-text"},` +
|
|
`{"type":"image_url","image_url":{"url":"URL","detail":"high"}}]}]`
|
|
|
|
var msgs []openai.ChatCompletionMessage
|
|
err := json.Unmarshal([]byte(jsonText), &msgs)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error: %s", err)
|
|
}
|
|
if len(msgs) != 2 {
|
|
t.Errorf("unexpected number of messages")
|
|
}
|
|
if msgs[0].Role != "system" || msgs[0].Content != "system-message" || msgs[0].MultiContent != nil {
|
|
t.Errorf("invalid user message: %v", msgs[0])
|
|
}
|
|
if msgs[1].Role != "user" || msgs[1].Content != "" || len(msgs[1].MultiContent) != 2 {
|
|
t.Errorf("invalid user message")
|
|
}
|
|
parts := msgs[1].MultiContent
|
|
if parts[0].Type != "text" || parts[0].Text != "nice-text" {
|
|
t.Errorf("invalid text part: %v", parts[0])
|
|
}
|
|
if parts[1].Type != "image_url" || parts[1].ImageURL.URL != "URL" || parts[1].ImageURL.Detail != "high" {
|
|
t.Errorf("invalid image_url part")
|
|
}
|
|
|
|
s, err := json.Marshal(msgs)
|
|
if err != nil {
|
|
t.Fatalf("Expected no error: %s", err)
|
|
}
|
|
res := strings.ReplaceAll(string(s), " ", "")
|
|
if res != jsonText {
|
|
t.Fatalf("invalid message: %s", string(s))
|
|
}
|
|
|
|
invalidMsg := []openai.ChatCompletionMessage{
|
|
{
|
|
Role: "user",
|
|
Content: "some-text",
|
|
MultiContent: []openai.ChatMessagePart{
|
|
{
|
|
Type: "text",
|
|
Text: "nice-text",
|
|
},
|
|
},
|
|
},
|
|
}
|
|
_, err = json.Marshal(invalidMsg)
|
|
if !errors.Is(err, openai.ErrContentFieldsMisused) {
|
|
t.Fatalf("Expected error: %s", err)
|
|
}
|
|
|
|
err = json.Unmarshal([]byte(`["not-a-message"]`), &msgs)
|
|
if err == nil {
|
|
t.Fatalf("Expected error")
|
|
}
|
|
|
|
emptyMultiContentMsg := openai.ChatCompletionMessage{
|
|
Role: "user",
|
|
MultiContent: []openai.ChatMessagePart{},
|
|
}
|
|
s, err = json.Marshal(emptyMultiContentMsg)
|
|
if err != nil {
|
|
t.Fatalf("Unexpected error")
|
|
}
|
|
res = strings.ReplaceAll(string(s), " ", "")
|
|
if res != `{"role":"user"}` {
|
|
t.Fatalf("invalid message: %s", string(s))
|
|
}
|
|
}
|
|
|
|
// handleChatCompletionEndpoint Handles the ChatGPT completion endpoint by the test server.
|
|
func handleChatCompletionEndpoint(w http.ResponseWriter, r *http.Request) {
|
|
var err error
|
|
var resBytes []byte
|
|
|
|
// completions only accepts POST requests
|
|
if r.Method != "POST" {
|
|
http.Error(w, "Method not allowed", http.StatusMethodNotAllowed)
|
|
}
|
|
var completionReq openai.ChatCompletionRequest
|
|
if completionReq, err = getChatCompletionBody(r); err != nil {
|
|
http.Error(w, "could not read request", http.StatusInternalServerError)
|
|
return
|
|
}
|
|
res := openai.ChatCompletionResponse{
|
|
ID: strconv.Itoa(int(time.Now().Unix())),
|
|
Object: "test-object",
|
|
Created: time.Now().Unix(),
|
|
// would be nice to validate Model during testing, but
|
|
// this may not be possible with how much upkeep
|
|
// would be required / wouldn't make much sense
|
|
Model: completionReq.Model,
|
|
}
|
|
// create completions
|
|
n := completionReq.N
|
|
if n == 0 {
|
|
n = 1
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
// if there are functions, include them
|
|
if len(completionReq.Functions) > 0 {
|
|
var fcb []byte
|
|
b := completionReq.Functions[0].Parameters
|
|
fcb, err = json.Marshal(b)
|
|
if err != nil {
|
|
http.Error(w, "could not marshal function parameters", http.StatusInternalServerError)
|
|
return
|
|
}
|
|
|
|
res.Choices = append(res.Choices, openai.ChatCompletionChoice{
|
|
Message: openai.ChatCompletionMessage{
|
|
Role: openai.ChatMessageRoleFunction,
|
|
// this is valid json so it should be fine
|
|
FunctionCall: &openai.FunctionCall{
|
|
Name: completionReq.Functions[0].Name,
|
|
Arguments: string(fcb),
|
|
},
|
|
},
|
|
Index: i,
|
|
})
|
|
continue
|
|
}
|
|
// generate a random string of length completionReq.Length
|
|
completionStr := strings.Repeat("a", completionReq.MaxTokens)
|
|
|
|
res.Choices = append(res.Choices, openai.ChatCompletionChoice{
|
|
Message: openai.ChatCompletionMessage{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
Content: completionStr,
|
|
},
|
|
Index: i,
|
|
})
|
|
}
|
|
inputTokens := numTokens(completionReq.Messages[0].Content) * n
|
|
completionTokens := completionReq.MaxTokens * n
|
|
res.Usage = openai.Usage{
|
|
PromptTokens: inputTokens,
|
|
CompletionTokens: completionTokens,
|
|
TotalTokens: inputTokens + completionTokens,
|
|
}
|
|
resBytes, _ = json.Marshal(res)
|
|
w.Header().Set(xCustomHeader, xCustomHeaderValue)
|
|
for k, v := range rateLimitHeaders {
|
|
switch val := v.(type) {
|
|
case int:
|
|
w.Header().Set(k, strconv.Itoa(val))
|
|
default:
|
|
w.Header().Set(k, fmt.Sprintf("%s", v))
|
|
}
|
|
}
|
|
fmt.Fprintln(w, string(resBytes))
|
|
}
|
|
|
|
func handleDeepseekR1ChatCompletionEndpoint(w http.ResponseWriter, r *http.Request) {
|
|
var err error
|
|
var resBytes []byte
|
|
|
|
// completions only accepts POST requests
|
|
if r.Method != "POST" {
|
|
http.Error(w, "Method not allowed", http.StatusMethodNotAllowed)
|
|
}
|
|
var completionReq openai.ChatCompletionRequest
|
|
if completionReq, err = getChatCompletionBody(r); err != nil {
|
|
http.Error(w, "could not read request", http.StatusInternalServerError)
|
|
return
|
|
}
|
|
res := openai.ChatCompletionResponse{
|
|
ID: strconv.Itoa(int(time.Now().Unix())),
|
|
Object: "test-object",
|
|
Created: time.Now().Unix(),
|
|
// would be nice to validate Model during testing, but
|
|
// this may not be possible with how much upkeep
|
|
// would be required / wouldn't make much sense
|
|
Model: completionReq.Model,
|
|
}
|
|
// create completions
|
|
n := completionReq.N
|
|
if n == 0 {
|
|
n = 1
|
|
}
|
|
if completionReq.MaxCompletionTokens == 0 {
|
|
completionReq.MaxCompletionTokens = 1000
|
|
}
|
|
for i := 0; i < n; i++ {
|
|
reasoningContent := "User says hello! And I need to reply"
|
|
completionStr := strings.Repeat("a", completionReq.MaxCompletionTokens-numTokens(reasoningContent))
|
|
res.Choices = append(res.Choices, openai.ChatCompletionChoice{
|
|
Message: openai.ChatCompletionMessage{
|
|
Role: openai.ChatMessageRoleAssistant,
|
|
ReasoningContent: reasoningContent,
|
|
Content: completionStr,
|
|
},
|
|
Index: i,
|
|
})
|
|
}
|
|
inputTokens := numTokens(completionReq.Messages[0].Content) * n
|
|
completionTokens := completionReq.MaxTokens * n
|
|
res.Usage = openai.Usage{
|
|
PromptTokens: inputTokens,
|
|
CompletionTokens: completionTokens,
|
|
TotalTokens: inputTokens + completionTokens,
|
|
}
|
|
resBytes, _ = json.Marshal(res)
|
|
w.Header().Set(xCustomHeader, xCustomHeaderValue)
|
|
for k, v := range rateLimitHeaders {
|
|
switch val := v.(type) {
|
|
case int:
|
|
w.Header().Set(k, strconv.Itoa(val))
|
|
default:
|
|
w.Header().Set(k, fmt.Sprintf("%s", v))
|
|
}
|
|
}
|
|
fmt.Fprintln(w, string(resBytes))
|
|
}
|
|
|
|
// getChatCompletionBody Returns the body of the request to create a completion.
|
|
func getChatCompletionBody(r *http.Request) (openai.ChatCompletionRequest, error) {
|
|
completion := openai.ChatCompletionRequest{}
|
|
// read the request body
|
|
reqBody, err := io.ReadAll(r.Body)
|
|
if err != nil {
|
|
return openai.ChatCompletionRequest{}, err
|
|
}
|
|
err = json.Unmarshal(reqBody, &completion)
|
|
if err != nil {
|
|
return openai.ChatCompletionRequest{}, err
|
|
}
|
|
return completion, nil
|
|
}
|
|
|
|
func TestFinishReason(t *testing.T) {
|
|
c := &openai.ChatCompletionChoice{
|
|
FinishReason: openai.FinishReasonNull,
|
|
}
|
|
resBytes, _ := json.Marshal(c)
|
|
if !strings.Contains(string(resBytes), `"finish_reason":null`) {
|
|
t.Error("null should not be quoted")
|
|
}
|
|
|
|
c.FinishReason = ""
|
|
|
|
resBytes, _ = json.Marshal(c)
|
|
if !strings.Contains(string(resBytes), `"finish_reason":null`) {
|
|
t.Error("null should not be quoted")
|
|
}
|
|
|
|
otherReasons := []openai.FinishReason{
|
|
openai.FinishReasonStop,
|
|
openai.FinishReasonLength,
|
|
openai.FinishReasonFunctionCall,
|
|
openai.FinishReasonContentFilter,
|
|
}
|
|
for _, r := range otherReasons {
|
|
c.FinishReason = r
|
|
resBytes, _ = json.Marshal(c)
|
|
if !strings.Contains(string(resBytes), fmt.Sprintf(`"finish_reason":"%s"`, r)) {
|
|
t.Errorf("%s should be quoted", r)
|
|
}
|
|
}
|
|
}
|