Files
go-openai/embeddings.go
Oleg 53212c71df Migrate From Old Completions + Embedding Endpoint (#28)
* migrate away from deprecated OpenAI endpoints

Signed-off-by: Oleg <97077423+RobotSail@users.noreply.github.com>

* test embedding correctness

Signed-off-by: Oleg <97077423+RobotSail@users.noreply.github.com>
2022-08-02 14:16:54 +06:00

149 lines
5.1 KiB
Go

package gogpt
import (
"bytes"
"context"
"encoding/json"
"net/http"
)
// EmbeddingModel enumerates the models which can be used
// to generate Embedding vectors.
type EmbeddingModel int
// String implements the fmt.Stringer interface.
func (e EmbeddingModel) String() string {
return enumToString[e]
}
// MarshalText implements the encoding.TextMarshaler interface.
func (e EmbeddingModel) MarshalText() ([]byte, error) {
return []byte(e.String()), nil
}
// UnmarshalText implements the encoding.TextUnmarshaler interface.
// On unrecognized value, it sets |e| to Unknown.
func (e *EmbeddingModel) UnmarshalText(b []byte) error {
if val, ok := stringToEnum[(string(b))]; ok {
*e = val
return nil
}
*e = Unknown
return nil
}
const (
Unknown EmbeddingModel = iota
AdaSimilarity
BabbageSimilarity
CurieSimilarity
DavinciSimilarity
AdaSearchDocument
AdaSearchQuery
BabbageSearchDocument
BabbageSearchQuery
CurieSearchDocument
CurieSearchQuery
DavinciSearchDocument
DavinciSearchQuery
AdaCodeSearchCode
AdaCodeSearchText
BabbageCodeSearchCode
BabbageCodeSearchText
)
var enumToString = map[EmbeddingModel]string{
AdaSimilarity: "text-similarity-ada-001",
BabbageSimilarity: "text-similarity-babbage-001",
CurieSimilarity: "text-similarity-curie-001",
DavinciSimilarity: "text-similarity-davinci-001",
AdaSearchDocument: "text-search-ada-doc-001",
AdaSearchQuery: "text-search-ada-query-001",
BabbageSearchDocument: "text-search-babbage-doc-001",
BabbageSearchQuery: "text-search-babbage-query-001",
CurieSearchDocument: "text-search-curie-doc-001",
CurieSearchQuery: "text-search-curie-query-001",
DavinciSearchDocument: "text-search-davinci-doc-001",
DavinciSearchQuery: "text-search-davinci-query-001",
AdaCodeSearchCode: "code-search-ada-code-001",
AdaCodeSearchText: "code-search-ada-text-001",
BabbageCodeSearchCode: "code-search-babbage-code-001",
BabbageCodeSearchText: "code-search-babbage-text-001",
}
var stringToEnum = map[string]EmbeddingModel{
"text-similarity-ada-001": AdaSimilarity,
"text-similarity-babbage-001": BabbageSimilarity,
"text-similarity-curie-001": CurieSimilarity,
"text-similarity-davinci-001": DavinciSimilarity,
"text-search-ada-doc-001": AdaSearchDocument,
"text-search-ada-query-001": AdaSearchQuery,
"text-search-babbage-doc-001": BabbageSearchDocument,
"text-search-babbage-query-001": BabbageSearchQuery,
"text-search-curie-doc-001": CurieSearchDocument,
"text-search-curie-query-001": CurieSearchQuery,
"text-search-davinci-doc-001": DavinciSearchDocument,
"text-search-davinci-query-001": DavinciSearchQuery,
"code-search-ada-code-001": AdaCodeSearchCode,
"code-search-ada-text-001": AdaCodeSearchText,
"code-search-babbage-code-001": BabbageCodeSearchCode,
"code-search-babbage-text-001": BabbageCodeSearchText,
}
// Embedding is a special format of data representation that can be easily utilized by machine learning models and algorithms.
// The embedding is an information dense representation of the semantic meaning of a piece of text. Each embedding is a vector of
// floating point numbers, such that the distance between two embeddings in the vector space is correlated with semantic similarity
// between two inputs in the original format. For example, if two texts are similar, then their vector representations should
// also be similar.
type Embedding struct {
Object string `json:"object"`
Embedding []float64 `json:"embedding"`
Index int `json:"index"`
}
// EmbeddingResponse is the response from a Create embeddings request.
type EmbeddingResponse struct {
Object string `json:"object"`
Data []Embedding `json:"data"`
Model EmbeddingModel `json:"model"`
}
// EmbeddingRequest is the input to a Create embeddings request.
type EmbeddingRequest struct {
// Input is a slice of strings for which you want to generate an Embedding vector.
// Each input must not exceed 2048 tokens in length.
// OpenAPI suggests replacing newlines (\n) in your input with a single space, as they
// have observed inferior results when newlines are present.
// E.g.
// "The food was delicious and the waiter..."
Input []string `json:"input"`
// ID of the model to use. You can use the List models API to see all of your available models,
// or see our Model overview for descriptions of them.
Model EmbeddingModel `json:"model"`
// A unique identifier representing your end-user, which will help OpenAI to monitor and detect abuse.
User string `json:"user"`
}
// CreateEmbeddings returns an EmbeddingResponse which will contain an Embedding for every item in |request.Input|.
// https://beta.openai.com/docs/api-reference/embeddings/create
func (c *Client) CreateEmbeddings(ctx context.Context, request EmbeddingRequest) (resp EmbeddingResponse, err error) {
var reqBytes []byte
reqBytes, err = json.Marshal(request)
if err != nil {
return
}
urlSuffix := "/embeddings"
req, err := http.NewRequest(http.MethodPost, c.fullURL(urlSuffix), bytes.NewBuffer(reqBytes))
if err != nil {
return
}
req = req.WithContext(ctx)
err = c.sendRequest(req, &resp)
return
}